Surface plasmon band tailoring of plasmonic nanostructure under the effect of water radiolysis by synchrotron radiation

Author:

Bharti Amardeep,Agrawal Ashish K.,Singh Balwant,Gautam Sanjeev,Goyal Navdeep

Abstract

Plasmonic metal nanostructures have a significant impact on a diverse domain of fields, including photocatalysis, antibacterial, drug vector, biosensors, photovoltaic cell, optical and electronic devices. Metal nanoparticles (MNps) are the simplest nanostructure promising ultrahigh stability, ease of manufacturing and tunable optical response. Silver nanoparticles (AgNp) dominate in the class of MNps because of their relatively high abundance, chemical activity and unique physical properties. Although MNps offer the desired physical properties, most of the synthesis and fabrication methods lag at the electronic grade due to an unbidden secondary product as a result of the direct chemical reduction process. In this paper, a facile protocol is presented for fabricating high-yield in situ plasmonic AgNps under monochromatic X-rays irradiation, without the use of any chemical reducing agent which prevents the formation of secondary products. The ascendancy of this protocol is to produce high quantitative yield with control over the reaction rate, particle size and localized surface plasmon resonance response, and also to provide the feasibility for in situ characterization. The role of X-ray energy, beam flux and integrated dose towards the fabrication of plasmonic nanostructures has been studied. This experiment extends plasmonic research and provides avenues for upgrading production technologies of MNps.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3