A kinetic and mechanistic study into the transformation of calcium sulfate hemihydrate to dihydrate

Author:

Gurgul Sebastian J.ORCID,Seng Gabriel,Williams Gareth R.ORCID

Abstract

The conversion of CaSO4·0.5H2O to CaSO4·2H2O is of great importance industrially, being the reaction behind plasterboard production and the setting of medical plasters. A detailed kinetic and mechanistic study of this process was conducted using time-resolved synchrotron X-ray diffraction in this work. The CaSO4·2H2O product is very similar regardless of whether the α- or β-form of CaSO4·0.5H2O is used as the starting material, but the reaction process is very different. The induction time is usually shorter for α-CaSO4·0.5H2O than β-CaSO4·0.5H2O, and a greater conversion percentage is observed with the former (although in neither case does the reaction proceed to 100% completion). The temperature of the system, widely used in industry as an indirect measure of the extent of the hydration process, is found to be a poor proxy for this, with the maximum temperature reached well before the reaction is complete. The Avrami–Erofe'ev and Gualtieri models could both be fitted to the experimental data, with the fits being substantially closer in the case of α-CaSO4·0.5H2O. The rate of reaction in the Avrami model tends to increase with the amount of gypsum seeds added to accelerate the process, and the importance of nucleation declines. The Gualtieri analysis suggested that the rate of nucleation increases substantially with the amount of seeds added, while there are less distinct changes in the rate of crystal growth. At low seed concentrations (<0.5% w/w) the rate of crystal growth is greater than the rate of nucleation, but at concentrations above 0.5% w/w nucleation is faster. These findings represent the first synchrotron study of the conversion of CaSO4·0.5H2O to CaSO4·2H2O, and will be of importance to gypsum producers globally.

Funder

Etex group

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3