Abstract
X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick–Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献