Abstract
A procedure to build the optical conductivity tensor that describes the full magneto-optical response of the system from experimental measurements is presented. Applied to the Fe L
2,3-edge of a 38.85 nm Fe3O4/SrTiO3 (001) thin-film, it is shown that the computed polarization dependence using the conductivity tensor is in excellent agreement with that experimentally measured. Furthermore, the magnetic field angular dependence is discussed using a set of fundamental spectra expanded on spherical harmonics. It is shown that the convergence of this expansion depends on the details of the ground state of the system in question and in particular on the valence-state spin–orbit coupling. While a cubic expansion up to the third order explains the angular-dependent X-ray magnetic linear dichroism of Fe3+ well, higher-order terms are required for Fe2+ when the orbital moment is not quenched.
Funder
European Research Council
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献