Dead-time correction for spectroscopic photon-counting pixel detectors

Author:

Blaj Gabriel

Abstract

Modern photon-counting pixel detectors have enabled a revolution in applications at synchrotron light sources and beyond in the last decade. One of the limitations of the current detectors is their reduced counting linearity or even paralysis at high counting rates, due to dead-time which results in photon pile-up. Existing dead-time and pile-up models fail to reproduce the complexity of dead-time effects on photon-counting, resulting in empirical calibrations for particular detectors at best, imprecise linearization methods, or no linearization. This problem will increase in the future as many synchrotron light sources plan significant brilliance upgrades and free-electron lasers plan moving to a quasi-continuous operation mode. Presented here are the first models that use the actual behavior of the analog pre-amplifiers in spectroscopic photon-counting pixel detectors with constant current discharge (e.g. the Medipix and CPix families of detectors) to deduce more accurate analytical models and optimal linearization methods. In particular, for detectors with at least two counters per pixel, the need for calibration, or previous knowledge of the detector and beam parameters (dead-time, integration time, large sets of synchrotron filling patterns), is completely eliminated. This is summarized in several models of increasing complexity and accuracy. Finally, a general empirical approach is presented, applicable to any particular cases where the analytical approach is not sufficiently precise.

Funder

U.S. Department of Energy, Office of Science

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3