Author:
Frenkel Anatoly I.,van Bokhoven Jeroen A.
Abstract
Heterogeneous catalysis is the enabling technology for much of the current and future processes relevant for energy conversion and chemicals synthesis. The development of new materials and processes is greatly helped by the understanding of the catalytic process at the molecular level on the macro/micro-kinetic time scale and on that of the actual bond breaking and bond making. The performance of heterogeneous catalysts is inherently the average over the ensemble of active sites. Much development aims at unravelling the structure of the active site; however, in general, these methods yield the ensemble-average structure. A benefit of X-ray-based methods is the large penetration depth of the X-rays, enablingin situandoperandomeasurements. The potential of X-ray absorption and emission spectroscopy methods (XANES, EXAFS, HERFD, RIXS and HEROS) to directly measure the structure of the catalytically active site at the single nanoparticle level using nanometer beams at diffraction-limited storage ring sources is highlighted. The use of pump–probe schemes coupled with single-shot experiments will extend the time range from the micro/macro-kinetic time domain to the time scale of bond breaking and making.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献