Proving the correctness of the algorithm for building a crystallographic space group

Author:

Petrauskas KarolisORCID,Merkys Andrius,Vaitkus AntanasORCID,Laibinis Linas,Gražulis Saulius

Abstract

An application of formal verification (using the proof assistant Isabelle/HOL) for ensuring the correctness of scientific data processing software in the crystallographic domain is presented. The proposed process consists of writing a pseudocode that describes an algorithm in a succinct but mathematically unambiguous way, then formulating or reusing necessary Isabelle theories and proving algorithm properties within these theories, and finally implementing the algorithm in a practical programming language. Both the formal proof and the semi-formal algorithm analysis are demonstrated on an example of a simple but important algorithm (widely used in crystallographic computing) that reconstructs a space-group operator list from a subset of symmetry operators. The cod-tools software package that implements the verified algorithm is also presented. On the basis of the reported results, it is argued that broader application of formal methods (e.g. formal verification of algorithm correctness) allows developers to improve the reliability of scientific software. Moreover, the formalized (within the proof assistant) domain-specific theory can be reused and gradually extended, thus continuously increasing the automation level of formal algorithm verification.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference29 articles.

1. Armstrong, J. (2013). Programming Erlang: Software for a Concurrent World. Dallas, Raleigh: Pragmatic Bookshelf.

2. Barnett, M., DeLine, R., Fändrich, M., Jacobs, B., Leino, R., Schulte, W. & Venter, H. (2005). VSTTE 2005: Verified Software: Theories, Tools, Experiments, pp. 144-152. Berlin, Heidelberg: Springer-Verlag.

3. RETRACTED: Structure of MsbA from Vibrio cholera: A Multidrug Resistance ABC Transporter Homolog in a Closed Conformation

4. Chapin, P. C. & McCormick, J. W. (2015). Building High Integrity Applications with SPARK. Cambridge University Press.

5. Doerr, A. & Levasseur, K. (2021a). Applied Discrete Structures, https://faculty.uml.edu/klevasseur/ADS2.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3