Tailoring morphology, structure and photoluminescence properties of anodic TiO2nanotubes

Author:

Einollahzadeh-Samadi M.,Dariani R. S.,Paul A.

Abstract

TiO2nanotube (TNT) structures were grown perpendicular to fluorine-doped tin-oxide-coated glass substrates by anodic oxidation of titanium films. The morphology, crystal structure and optical properties of the TNTs were shown to be dependent on the thickness of the titanium film, which acts as an electrode in electrochemical anodization. Field emission scanning electron microscopy measurements revealed that an increase in titanium thickness from 1.5 to 2.7 µm caused a considerable increase in both inner diameter and tube length, which in turn increases the porosity and the physical surface of the TNTs per unit area. Grazing-incidence small-angle scattering was used to infer the statistical lateral ordering of the TNTs over macroscopic length scales. X-ray diffraction data show an increase in the texture coefficient for the (004) plane as well as theI004/I101intensity ratio with titanium film thickness. All these factors lead to a significant improvement in the photoluminescence intensity from titania nanotubes, which is about five times more than from titania nanoporous materials under similar circumstances.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3