Residual stress determination in a shot-peened nickel-based single-crystal superalloy using X-ray diffraction

Author:

Morançais Amélie,Fèvre Mathieu,François Manuel,Guel Nicolas,Kruch Serge,Kanouté Pascale,Longuet Arnaud

Abstract

A residual stress depth profile up to 1 mm is determined with the Ortner method in a single crystal of a nickel-based superalloy which has been subjected to shot-peening. An optimization procedure is assessed to minimize uncertainties connected to Bragg angle, mosaic spread and numerical stability. The theoretical background is reviewed to highlight the connections between Bragg angle positions and the stress tensor components in different coordinate systems and also to obtain a mathematically consistent formulation. Transformation matrices required to express the strain components with respect to the initial state are provided for the general case. It is shown that, when a stress gradient occurs beneath the sample surface plane, the value of the σ33component of the stress tensor determined from measurements is twice its true value. For a sample surface oriented along a 〈100〉 crystallographic direction, the data analysis shows that the compressive stresses which develop in the 150 µm-thick surface layer are compensated for by small tensile stresses developing at long scale rather than a specific layer of finite size featuring high tensile stresses. At least 17 Bragg angles are required to have stable solutions with standard deviations close to 30 MPa. Maximum compressive stresses of 1000 or 1400 MPa depending on the assumption used to describe the initial state occur at a 30 µm depth.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3