Author:
Taris Alessandra,Grosso Massimiliano,Brundu Mariarosa,Guida Vincenzo,Viani Alberto
Abstract
In this work, multivariate statistical techniques are employed to determine patterns and conversion curves from time-resolved X-ray powder diffraction data. For these purposes, time-window statistical total correlation spectroscopy is introduced for the pattern matching of the crystalline phase and is shown to be effective even in the case of overlapping peaks. When combined with evolving factor analysis and multivariate curve resolution–alternating least squares, this technique allows a definite estimation of patterns and conversion curves. The procedure is applied to in situ synchrotron powder diffraction patterns to monitor the setting reaction of magnesium potassium phosphate ceramic (MKP) from magnesia (MgO) and potassium dihydrogen phosphate. It is shown that the phases involved in the reaction are clearly distinguished and their evolution is correctly described. The conversion curves estimated with the proposed procedure are compared with the ones determined with the peak integration method, leading to an excellent agreement (Pearson's correlation coefficient equal to 0.9995 and 0.9998 for MgO and MKP, respectively). The approach also allows for the detection and description of the evolution of amorphous phases that cannot be described through conventional analysis of powder diffraction data.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献