The effect of polydispersity, shape fluctuations and curvature on small unilamellar vesicle small-angle X-ray scattering curves

Author:

Chappa Veronica,Smirnova Yuliya,Komorowski Karlo,Müller Marcus,Salditt TimORCID

Abstract

Small unilamellar vesicles (20–100 nm diameter) are model systems for strongly curved lipid membranes, in particular for cell organelles. Routinely, small-angle X-ray scattering (SAXS) is employed to study their size and electron-density profile (EDP). Current SAXS analysis of small unilamellar vesicles (SUVs) often employs a factorization into the structure factor (vesicle shape) and the form factor (lipid bilayer electron-density profile) and invokes additional idealizations: (i) an effective polydispersity distribution of vesicle radii, (ii) a spherical vesicle shape and (iii) an approximate account of membrane asymmetry, a feature particularly relevant for strongly curved membranes. These idealizations do not account for thermal shape fluctuations and also break down for strong salt- or protein-induced deformations, as well as vesicle adhesion and fusion, which complicate the analysis of the lipid bilayer structure. Presented here are simulations of SAXS curves of SUVs with experimentally relevant size, shape and EDPs of the curved bilayer, inferred from coarse-grained simulations and elasticity considerations, to quantify the effects of size polydispersity, thermal fluctuations of the SUV shape and membrane asymmetry. It is observed that the factorization approximation of the scattering intensity holds even for small vesicle radii (∼30 nm). However, the simulations show that, for very small vesicles, a curvature-induced asymmetry arises in the EDP, with sizeable effects on the SAXS curve. It is also demonstrated that thermal fluctuations in shape and the size polydispersity have distinguishable signatures in the SAXS intensity. Polydispersity gives rise to low-q features, whereas thermal fluctuations predominantly affect the scattering at larger q, related to membrane bending rigidity. Finally, it is shown that simulation of fluctuating vesicle ensembles can be used for analysis of experimental SAXS curves.

Funder

Deutsche Forschungsgemeinschaft

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3