Reduction of lattice disorder in protein crystals by high-pressure cryocooling

Author:

Huang Qingqiu,Gruner Sol M.,Kim Chae Un,Mao Yuxin,Wu Xiaochun,Szebenyi Doletha M. E.

Abstract

High-pressure cryocooling (HPC) has been developed as a technique for reducing the damage that frequently occurs when macromolecular crystals are cryocooled at ambient pressure. Crystals are typically pressurized at around 200 MPa and then cooled to liquid nitrogen temperature under pressure; this process reduces the need for penetrating cryoprotectants, as well as the damage due to cryocooling, but does not improve the diffraction quality of the as-grown crystals. Here it is reported that HPC using a pressure above 300 MPa can reduce lattice disorder, in the form of high mosaicity and/or nonmerohedral twinning, in crystals of three different proteins, namely human glutaminase C, the GTP pyrophosphokinase YjbM and the uncharacterized protein lpg1496. Pressure lower than 250 MPa does not induce this transformation, even with a prolonged pressurization time. These results indicate that HPC at elevated pressures can be a useful tool for improving crystal packing and hence the quality of the diffraction data collected from pressurized crystals.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3