In situ energy-dispersive X-ray diffraction of local phase dynamics during solvothermal growth of Cu4O3

Author:

Jiang ZhelongORCID,Sharma JaiORCID,Okasinski John S.,Chen Haiyan,Shoemaker Daniel P.

Abstract

Using in situ methods to characterize the state of a system during reactions is critical to understanding and improving solvothermal syntheses. This work demonstrates the use of in situ energy-dispersive X-ray diffraction (EDXRD) to investigate the local dynamics during solvothermal formation of Cu4O3 using a general-purpose full-sized laboratory oven. This allows for direct comparison of in situ data with laboratory-based reactions. Using in situ EDXRD, changes in the local amounts of Cu4O3, Cu2O and CuO within approximately 100 × 100 × 700 µm gauge volumes during solvothermal Cu4O3 formation were recorded. Fast conversion between Cu2O and CuO was observed in the solvothermal environment, whereas Cu4O3 was found to be chemically stable against disturbances once formed. The observed differences in local dynamics give further support to the differences in formation mechanisms between Cu4O3 and Cu2O/CuO proposed here.

Funder

U.S. Department of Energy, Office of Science

Consortium for Materials Properties Research in Earth Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Panoramic (in beam) studies of materials synthesis;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3