Investigation of high-pressure planetary ices by cryo-recovery. II. High-pressure apparatus, examples and a new high-pressure phase of MgSO4·5H2O

Author:

Wang Weiwei,Fortes A. DominicORCID,Dobson David P.,Howard Christopher M.,Bowles John,Hughes Neil J.,Wood Ian G.ORCID

Abstract

An apparatus is described for the compression of samples to ∼2 GPa at temperatures from 80 to 300 K, rapid chilling to 80 K whilst under load and subsequent recovery into liquid nitrogen after the load is released. In this way, a variety of quenchable high-pressure phases of many materials may be preserved for examination outside the high-pressure sample environment, with the principal benefit being the ability to obtain high-resolution powder diffraction data for phase identification and structure solution. The use of this apparatus, in combination with a newly developed cold-loadable low-temperature stage for X-ray powder diffraction (the PheniX-FL), is illustrated using ice VI (a high-pressure polymorph of ordinary water ice that is thermodynamically stable only above ∼0.6 GPa) as an example. A second example using synthetic epsomite (MgSO4·7H2O) reveals that, at ∼1.6 GPa and 293 K, it undergoes incongruent melting to form MgSO4·5H2O plus brine, contributing to a long-standing debate on the nature of the high-pressure behaviour of this and similar highly hydrated materials. The crystal structure of this new high-pressure polymorph of MgSO4·5H2O has been determined at 85 K in space group Pna21 from the X-ray powder diffraction pattern of a sample recovered into liquid nitrogen and is found to differ from that of the known ambient-pressure phase of MgSO4·5H2O (pentahydrite, space group P {\overline 1}), consisting of corner-sharing MgO6–SO4 ion pairs rather than infinite corner-sharing chains.

Funder

Science and Technology Facilities Council

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3