Multilevel atomic structural model for interstratified opal materials

Author:

Wang Hsiu-WenORCID,Page KatharineORCID,Neder Reinhard B.ORCID,Stack Andrew G.,Bish David L.

Abstract

The structure of opal has long fascinated scientists. It occurs in a number of structural states, ranging from amorphous to exhibiting features of stacking disorder. Opal-CT, where C and T signify cristobalite- and tridymite-like interstratification, represents an important link in the length scales between amorphous and crystalline states. However, details about local atomic (dis)order and arrangements extending to long-range stacking faults in opal polymorphs remain incompletely understood. Here, a multilevel modeling approach is reported that considers stacking states in correlation with the abundance of C and T segments as a high-level structural parameter (i.e. not each atom). Optimization accounting for inter-tetrahedral bond lengths and angles and the regularity of the silicate tetrahedra is included as lower levels of structural parameters. Together, a set of parameters with both coarse-grained and atomistic features for different levels of structural details is refined. Structural disorder at the ∼10–100 Å distance scale is evaluated using experimental pair distribution function and diffraction datasets, comparing peak intensities, widths and asymmetry. This work presents a complete multilevel structural description of natural opal-CT and explains many of the unusual features observed in X-ray powder diffraction patterns. This modeling approach can be adopted generally for analyzing layered materials and their assembly into 3D structures.

Funder

U.S. Department of Energy, Office of Science

National Institute of Standards and Technology

Argonne National Laboratory

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3