Small-angle scattering from polydisperse particles with a diffusive surface

Author:

Tomchuk Olexandr V.,Bulavin Leonid A.,Aksenov Viktor L.,Garamus Vasil M.,Ivankov Oleksandr I.,Vul' Alexander Ya.,Dideikin Artur T.,Avdeev Mikhail V.

Abstract

Particles with a diffusive surface, characterized by a deviation from the Porod power-law asymptotic behavior in small-angle scattering towards an exponent below −4, are considered with respect to the polydispersity problem. The case of low diffusivity is emphasized, which allows the description of the scattering length density distribution within spherically isotropic particles in terms of a continuous profile. This significantly simplifies the analysis of the particle-size distribution function, as well as the change in the scattering invariants under contrast variation. The effect of the solvent scattering contribution on the apparent exponent value in power-law-type scattering and related restrictions in the analysis of the scattering curves are discussed. The principal features and possibilities of the developed approach are illustrated in the treatment of experimental small-angle neutron scattering data from liquid dispersions of detonation nanodiamond. The obtained scattering length density profile of the particles fits well with a transition of the diamond states of carbon inside the crystallites to graphite-like states at the surface, and it is possible to combine the diffusive properties of the surface with the experimental shift of the mean scattering length density of the particles compared with that of pure diamond. The moments of the particle-size distribution are derived and analyzed in terms of the lognormal approximation.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3