Author:
Okube Maki,Yoshizaki Jumpei,Toyoda Takeshi,Sasaki Satoshi
Abstract
Combinational studies of synchrotron X-rays and neutrons have been performed to determine the site occupancy, valence state and magnetic structure of M-type BaTiMnFe10O19. X-ray resonant scattering studies have revealed the site preference, where Ti and Mn ions are distributed evenly over the Fe1, Fe2 and Fe3 sites of five independent Fe sites. X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) results for BaTiMnFe10O19 are similar to those of BaFe12O19 at the Fe K absorption edge. Clear chemical shifts exist at both the Mn and Fe edges, suggestive of a mixed valence of Mn and Fe ions. The Mn K XANES resembles Mn–Zn ferrite, where the observed fourfold peak is explained as the presence of four-coordinated Mn ions, on the basis of the self-consistent calculation of relativistic density functional theory. This can be explained by the presence of spinel substructures within the S block layer. Satellite reflections of 002 ± τ and 004 − τ (τ = 2/3) on 00l were observed at a temperature of 8 K in neutron powder diffraction, due to magnetic scattering on the helicoidal arrangement of ordered spins with a propagation period of c/τ. The magnetic structure observed in the neutron powder diffraction and the XMCD results explain the decreasing uniaxial magnetization from BaFe12O19.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献