Specific analysis of highly absorbing nanoporous powder by small-angle X-ray scattering

Author:

Lu ZijieORCID,Rébiscoul Diane,Narayanan TheyencheriORCID,Zemb Thomas

Abstract

The characterization of nanoporous powders of highly absorbing compounds by small-angle X-ray scattering (SAXS) involves overcoming several difficulties before quantitative information related to the porous texture, such as the specific surface and the porous volume, can be derived. In this article, first, the contribution of the grain facet reflectivity and scattering from the bulk of a grain with the density of ThO2, a highly absorbing material, were calculated. Microporous ThO2 powder having micrometric grain size was characterized, in which the scattering signal is predominant. A high-resolution synchrotron instrument was used in order to cover a wider q range and minimize the absorption effect, and the results were compared with those obtained using a laboratory X-ray source. Concerning the absorption problem existing with a laboratory X-ray source, a new and robust experimental method was proposed to correctly determine the scattering intensity of the highly absorbing granular samples on an absolute scale. This method allows one to calculate accurately the porous volume and the specific surface via Porod's law and the invariant using a laboratory SAXS instrument. This last result opens new perspectives for the characterization of the volume and the specific surface of highly absorbing actinide oxide powders.

Funder

China Scholarship Council

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3