Abstract
Small-angle neutron scattering has been used to study the vortex lattice in superconducting MgB2 doped with either manganese or carbon to achieve a similar suppression of the critical temperature. Measurements were performed with the magnetic field applied along the c axis, where the vortex lattice in pure MgB2 is known to undergo a field- and temperature-driven 30° rotation transition. For Mn doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB2, indicating only a modest effect on the vortex–vortex interaction. In contrast, the vortex lattice rotation transition is completely suppressed in the C-doped case, probably due to a change in the electronic structure which affects the two-band/two-gap nature of superconductivity in MgB2. The vortex lattice longitudinal correlation length shows the opposite behavior, remaining roughly unchanged between pure and C-doped MgB2 while it is significantly reduced in the Mn-doped case. However, the extensive vortex lattice metastability and related activated behavior, observed in conjunction with the vortex lattice transition in pure MgB2, are also seen in the Mn-doped sample. This shows that the vortex lattice disordering is not associated with a substantially increased vortex pinning.
Funder
U.S. Department of Energy, Office of Science
Gordon and Betty Moore Foundation
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献