Abstract
Controlling the parameters during synthetic rutile production is essential to minimize production costs and ensure final product quality. Powder X-ray diffraction (PXRD) is typically used within the industry to guide process control. This work investigated the source of unusual features observed in the PXRD pattern of a slow-cooled reduced ilmenite (RI), which were not observed for a rapid-cooled RI. For the slow-cooled RI, the 002 peak ofM3O5(anosovite) had disappeared and the intensity of the \bar 203, 203, 204 and 402 peaks had decreased significantly compared to the pattern for the rapid-cooled RI. Using transmission electron microscopy, selected area electron diffraction (SAED) and pair distribution function (PDF) analysis, the authors attribute these features toM3O5–anatase intergrowth formation, which causes a loss in long-range order along theM3O5caxis. Strong diffuse streaking in the SAED patterns was also evident and supported the presence of disordered intergrowths from the oxidation ofM3O5. PDF analysis showed a significant improvement in the fit to the data for the slow-cooled RI, primarily in the <17 Å region, when anatase was added to the PDF model. The results presented here highlight the importance of the reduction and cooling stages during the formation of these industrially relevant RI minerals, which may be used to direct the production process and final TiO2product quality.
Funder
Argonne National Laboratory
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献