How do specimen preparation and crystal perfection affect structure factor measurements by quantitative convergent-beam electron diffraction?

Author:

Peng Ding,Nakashima Philip N. H.ORCID

Abstract

The effectiveness of tripod polishing and crushing as methods of mechanically preparing transmission electron microscopy specimens of hard brittle inorganic crystalline materials is investigated via the example of cerium hexaboride (CeB6). It is shown that tripod polishing produces very large electron-transparent regions of very high crystal perfection compared to the more rapid technique of crushing, which produces crystallites with a high density of imperfections and significant mosaicity in the case studied here where the main crystallite facets are not along the natural {001} cleavage planes of CeB6. The role of specimen quality in limiting the accuracy of structure factor measurements by quantitative convergent-beam electron diffraction (QCBED) is investigated. It is found that the bonding component of structure factors refined from CBED patterns obtained from crushed and tripod-polished specimens varies very significantly. It is shown that tripod-polished specimens yield CBED patterns of much greater integrity than crushed specimens and that the mismatch error that remains in QCBED pattern matching of data from tripod-polished specimens is essentially nonsystematic in nature. This stands in contrast to QCBED using crushed specimens and lends much greater confidence to the accuracy and precision of bonding measurements by QCBED from tripod-polished specimens.

Funder

Australian Research Council

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3