Extended Q-range small-angle neutron scattering to understand the morphology of proton-exchange membranes: the case of the functionalized syndiotactic-polystyrene model system

Author:

Schiavone Maria-Maddalena,Lamparelli David HermannORCID,Daniel ChristopheORCID,Golla Manuchar,Zhao YueORCID,Iwase HirokiORCID,Arima-Osonoi Hiroshi,Takata Shin-ichi,Szentmiklosi LaszloORCID,Maroti BoglarkaORCID,Allgaier Jürgen,Radulescu AurelORCID

Abstract

Semi-crystalline polymers exhibit microphase separation into crystalline and amorphous domains characterized by multiple structural levels with sizes ranging from ångströms to hundreds of nanometres. The combination of small-angle (SANS) and wide-angle (WANS) neutron scattering on the same beamline enables reliable in situ characterization of such materials under application-relevant conditions, with the unique advantage of contrast variation by controlled labelling, allowing the structure of such multi-component systems to be resolved in detail. This paper reports a structural analysis performed on deuterated polymer membranes based on syndiotactic polystyrene (sPS) using an extended Q-range SANS and WANS combination, always with the same neutron scattering instrument, either a pinhole SANS diffractometer installed at a research reactor or a `small- and wide-angle' time-of-flight diffractometer installed at a neutron spallation source. sPS is a semi-crystalline material that becomes hydrophilic and proton conducting when suitable functionalization is achieved by thin film sulfonation, and can form various co-crystalline complexes (clathrates) with small organic molecules stored in the crystalline phase as guests in the vacancies between the polymer helices. Therefore, this material is interesting not only for its conducting properties but also for its versatility as a model system to evaluate the usefulness of extended Q-range neutron scattering in such studies. Variation of neutron contrast was achieved in the amorphous hydrophilic phase by using H2O or D2O to hydrate the membranes and in the crystalline phase by loading the clathrates with deuterated or protonated guest molecules. The experimental approach, the advantages and limitations of the two types of instrumentation used in such analyses, and the main results obtained with respect to the structural characterization of sulfonated sPS membranes under different hydration and temperature conditions are reported, and the potential of this method for similar structural studies on other semi-crystalline polymeric materials is discussed.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3