Monolayer effect of a gemini surfactant with a rigid biphenyl spacer on its self-crystallization at the air/liquid interface

Author:

Chen Qibin,Yao Junyao,Hu Xin,Shen Jincheng,Sheng Yujie,Liu Honglai

Abstract

A gemini surfactant with a biphenyl spacer can spontaneously generate crystals at the air/solution interface. X-ray crystallography reveals that surfactant molecules exhibit an almost fully extended conformation with interdigitating alkyl chains, together with an approximate co-planarity of two C—C—C planes in two alkyl chains of one gemini molecule, and a prominent dihedral angle between the benzene rings and C—C—C planes of the alkyl chains. Infrared reflection–absorption spectroscopy shows that the gemini surfactant was stretched at the air/water interface, with the hydrocarbon chains oriented at a tilt angle of ∼75° with respect to the surface normal. In particular, the biphenyl group is more or less perpendicular to the water surface, and the C—C—C plane of the alkyl chain tends to be parallel to the water surface. Both results point out a remarkable similarity in the molecular conformation between the crystal and the monolayer. Meanwhile, dynamic light scattering and transmission electron microscopy results indicate that the crystallization of such gemini surfactants at the interface is contrary to the crystallization behavior in the bulk phase, meaning that the surfactant solution can only form a supersaturated solution as it is cooled, though the crystallization temperature of 296 K is lower than the Krafft temperature (∼303 K). Therefore, our findings indicate that the Gibbs monolayer of the gemini surfactant plays a critical role in its interfacial crystallization. Additionally, multiple weak intermolecular interactions, involving van der Waals interaction, π–π stacking and cationic–π interactions, as well as the hydrophobic effect during the aggregation of the gemini molecule in solution, are responsible for the formation of the interfacial crystal.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3