Electron diffraction patterns from scroll nanotubes: interpretation peculiarities

Author:

Khalitov Zufar,Khadiev Azat,Pashin Dmitry

Abstract

This article describes the structure of scroll nanotubes and associated diffraction effects in the context of electron diffraction from a single nanotube. It is suggested that the effect of multiple equidistant splitting of diffuse reflections into cone series be used as a diffraction criterion for conical scroll structure identification. For cylindrical scroll structure determination, the effect of the azimuthal dependence of the intensity of basal diffraction spots is proposed as a characteristic sign. Good agreement between specific oscillations in both theoretical and experimental profiles of basal diffraction spots was achieved. It was also established that there are special values of chiral angles in cylindrical scroll nanotubes that lead to order enhancement in their structure along the tube axis, whereas even a small deviation from these angles results in degradation of diffraction conditions for some diffraction spots in the diffraction pattern.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The influence of edge specific surface energy on the direction of hydrosilicate layers scrolling;Nanosystems: Physics, Chemistry, Mathematics;2021-10-29

2. Quantitative theory of diffraction by cylindrical scroll nanotubes;Acta Crystallographica Section A Foundations and Advances;2018-05-01

3. Quantitative theory of diffraction by ordered coaxial nanotubes: reciprocal-lattice and diffraction pattern indexing;Acta Crystallographica Section A Foundations and Advances;2016-10-03

4. Structure of ordered coaxial and scroll nanotubes: general approach;Acta Crystallographica Section A Foundations and Advances;2016-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3