New capabilities for enhancement of RMCProfile: instrumental profiles with arbitrary peak shapes for structural refinements using the reverse Monte Carlo method

Author:

Zhang Yuanpeng,Eremenko Maksim,Krayzman Victor,Tucker Matthew G.,Levin Igor

Abstract

Reported here are the development and application of new capabilities in the RMCProfile software for structural refinements using the reverse Monte Carlo (RMC) method. An algorithm has been implemented to enable the use of arbitrary peak-shape functions in the modeling of Bragg diffraction patterns and instrumental resolution effects on total-scattering data. This capability eliminates the dependence of RMCProfile on preset functions, which are inadequate for data produced by some total-scattering instruments, e.g. NOMAD at the Spallation Neutron Source (SNS) at Oak Ridge, Tennessee, USA. The recently developed procedure for the instrument-resolution correction has been modified to improve its accuracy, which is critical for recovering nanoscale structure. The ability to measure fine details of local and nanoscale structures with high fidelity is required because such features are increasingly exploited in the design of materials with enhanced functional properties. The new methodology has been tested via RMC refinements of large-scale atomic configurations (distances up to 8 nm) for SrTiO3 using neutron total-scattering data collected on the Polaris and NOMAD time-of-flight powder diffractometers at the ISIS facility (Didcot, Oxfordshire, UK) and SNS, respectively. While the Polaris instrument is known to provide the high-quality data needed for RMC analysis, the similar and sound atomic configurations obtained from both instruments confirmed that the NOMAD data are also suitable for RMC refinements over a broad distance range.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3