1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng, X. (2016). arXiv:1603.04467.
2. Behnke, O., Kröninger, K., Schott, G. & Schörner-Sadenius, T. (2013). Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods. Weinheim: Wiley-VCH.
3. Bishop, C. M. (1994). Mixture Density Networks. Technical Report NCRG 4288, Neural Computing Research Group, Aston University, Birmingham, UK.
4. Towards reflectivity profile inversion through artificial neural networks
5. Cowan, G. (1998). Statistical Data Analysis. Oxford University Press.