Structure modeling and quantitative X-ray diffraction of C-(A)-S-H

Author:

Mesecke Karsten,Warr Laurence N.ORCID,Malorny Winfried

Abstract

Quantitative X-ray diffraction of nanocrystalline calcium silicate hydrate (C-S-H) and its aluminium-substituted variants (C-A-S-H) has so far been limited by a lack of appropriate structure models. In this study, atomistic structure models derived from tobermorite were combined with a supercell approach using TOPAS. By accounting for nanostructural features such as isolated layers, turbostratic disorder and, for the first time, fibrils, characteristic reflections and asymmetric bands were more accurately simulated than before, providing the means for phase quantification and refinement of structural sites. This improved methodology is applied to autoclaved aerated concrete and the experimental study of related hydrothermal reactions. Scanning electron microscopy indicated a fibrillar morphology for intermediate C-(A)-S-H, and energy-dispersive X-ray spectroscopy constrained its Ca/Si ratio to 1.31–1.35. As a first step, the direct quantification of C-(A)-S-H via structure models was assessed by a series of X-ray diffraction measurements using corundum as an internal standard. Secondly, the verified structure model was applied to evaluate in situ X-ray diffraction experiments at 457, 466 and 473 K (1.1, 1.35 and 1.55 MPa, respectively). Finally, a quantitative study of industrially produced autoclaved aerated concrete was conducted, determining 20–30 wt% C-(A)-S-H at Ca/Si ratios < 1.0. In general, the developed structure models advance the study of Portland cement concrete and related materials, including autoclaved aerated concrete, and the supercell approach may be universally applicable to other nanocrystalline materials.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3