Abstract
Stoichiometric antimony selenide (Sb2Se3) nanocrystals have been successfully engineered by a facile physical vapor deposition method, employing a single precursor of polycrystalline Sb2Se3 charge in a closed quartz ampoule under high vacuum without any foreign seed or extraneous chemical elements. This work underscores the efficacy of the vapor deposition process and provides synthetic strategies to scale down bulk Sb2Se3 into novel nanostructures. The morphological evolution of the tailored architecture was examined on micro and nano size scales by scanning electron microscopy and high-resolution transmission electron microscopy. The intrinsic mechanism governing the nanostructure formation is revealed as layer-by-layer growth, related to the unique layered structure of Sb2Se3. The optical properties of the grown crystals were probed by UV–vis–NIR and photoluminescence tools. The band-gap values of the microfibers, nanorods, nanooctahedra and nanospheres estimated from UV–vis–NIR analysis are found to be 1.25, 1.47, 1.51 and 1.75 eV, respectively. Powder X-ray diffraction, energy-dispersive analysis by X-rays, X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence studies confirmed the quality, phase purity and homogeneity of the as-grown nanostructures. The adopted physical vapor deposition method is thus shown to be a simple and elegant route which resulted in the enhancement of the band gap for the Sb2Se3 samples compared with their counterparts grown by chemical methods. This approach has great potential for further applications in optoelectronics.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献