Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique

Author:

Bibin J.ORCID,Kunjomana A. G.

Abstract

Stoichiometric antimony selenide (Sb2Se3) nanocrystals have been successfully engineered by a facile physical vapor deposition method, employing a single precursor of polycrystalline Sb2Se3 charge in a closed quartz ampoule under high vacuum without any foreign seed or extraneous chemical elements. This work underscores the efficacy of the vapor deposition process and provides synthetic strategies to scale down bulk Sb2Se3 into novel nanostructures. The morphological evolution of the tailored architecture was examined on micro and nano size scales by scanning electron microscopy and high-resolution transmission electron microscopy. The intrinsic mechanism governing the nanostructure formation is revealed as layer-by-layer growth, related to the unique layered structure of Sb2Se3. The optical properties of the grown crystals were probed by UV–vis–NIR and photoluminescence tools. The band-gap values of the microfibers, nanorods, nanooctahedra and nanospheres estimated from UV–vis–NIR analysis are found to be 1.25, 1.47, 1.51 and 1.75 eV, respectively. Powder X-ray diffraction, energy-dispersive analysis by X-rays, X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence studies confirmed the quality, phase purity and homogeneity of the as-grown nanostructures. The adopted physical vapor deposition method is thus shown to be a simple and elegant route which resulted in the enhancement of the band gap for the Sb2Se3 samples compared with their counterparts grown by chemical methods. This approach has great potential for further applications in optoelectronics.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3