An inclined detector geometry for improved X-ray total scattering measurements

Author:

Burns NicholasORCID,Rahemtulla Aly,Annett Scott,Moreno Beatriz,Kycia StefanORCID

Abstract

X-ray total scattering measurements are implemented using a digital flat-panel area detector in an inclined geometry and compared with the traditional geometry. The traditional geometry is defined here by the incident X-ray beam impinging on and normal to the center-most pixel of a detector. The inclined geometry is defined here by a detector at a pitch angle α, set to 15° in this case, bisected by the vertical scattering plane. The detector is positioned such that the incident X-ray beam strikes the pixels along the bottom edge and 90° scattered X-rays impinge on the pixels along the top edge. The geometric attributes of the inclined geometry translate into multiple benefits, such as an extension of the measurable scattering range to 90°, a 47% increase in the accessible magnitudes of the reciprocal-space vector Q and a leveling of the dynamic range in the measured total scattering pattern. As a result, a sixfold improvement in signal-to-noise ratios is observed at higher scattering angles, enabling up to a 36-fold reduction in acquisition time. Additionally, the extent of applied modification functions is reduced, decreasing the magnitude of termination ripples and improving the real-space resolution of the pair distribution function G(r). Taken all together, these factors indicate that the inclined geometry produces higher quality data than the traditional geometry, usable for simultaneous Rietveld refinement and total scattering studies.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

National Research Council Canada

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3