X-ray absorption spectroscopy and density functional analysis of the Fe3+ distribution profile on Al sites in a chrysoberyl crystal, BeAl2O4:Fe3+

Author:

Kanchiang Kanokwan,Bootchanont Atipong,Witthayarat Janyaporn,Pramchu Sittichain,Thanasuthipitak Panjawan,Yimnirun Rattikorn

Abstract

Chrysoberyl is one of the most interesting minerals for laser applications, widely used for medical purposes, as it exhibits higher laser performance than other materials. Although its utilization has been vastly expanded, the location of transition metal impurities, especially the iron that is responsible for chrysoberyl's special optical properties, is not completely understood. The full understanding and control of these optical properties necessitates knowledge of the precise location of the transition metals inside the structure. Therefore, synchrotron X-ray absorption spectroscopy (XAS), a local structural probe sensitive to the different local geometries, was employed in this work to determine the site occupation of the Fe3+ cation in the chrysoberyl structure. An Fe K-edge X-ray absorption near-edge structure (XANES) simulation was performed in combination with density functional theory calculations of Fe3+ cations located at different locations in the chrysoberyl structure. The simulated spectra were then qualitatively compared with the measured XANES features. The comparison indicates that Fe3+ is substituted on the two different Al2+ octahedral sites with the proportion 60% on the inversion site and 40% on the reflection site. The accurate site distribution of Fe3+ obtained from this work provides useful information on the doping process for improving the efficiency of chrysoberyl as a solid-state laser material.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3