Abstract
The precipitation of hydrated phases from a chondrite-like Na–Mg–Ca–SO4–Cl solution is studied using in situ synchrotron X-ray powder diffraction, under rapid- (360 K h−1, T = 250–80 K, t = 3 h) and ultra-slow-freezing (0.3 K day−1, T = 273–245 K, t = 242 days) conditions. The precipitation sequence under slow cooling initially follows the predictions of equilibrium thermodynamics models. However, after ∼50 days at 245 K, the formation of the highly hydrated sulfate phase Na2Mg(SO4)2·16H2O, a relatively recent discovery in the Na2Mg(SO4)2–H2O system, was observed. Rapid freezing, on the other hand, produced an assemblage of multiple phases which formed within a very short timescale (≤4 min, ΔT = 2 K) and, although remaining present throughout, varied in their relative proportions with decreasing temperature. Mirabilite and meridianiite were the major phases, with pentahydrite, epsomite, hydrohalite, gypsum, blödite, konyaite and loweite also observed. Na2Mg(SO4)2·16H2O was again found to be present and increased in proportion relative to other phases as the temperature decreased. The results are discussed in relation to possible implications for life on Europa and application to other icy ocean worlds.
Funder
Natural Environment Research Council
Macaulay Development Trust
Diamond Light Source
Keele University
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献