Infrared furnace for in situ neutron single-crystal diffraction studies in controlled gas atmospheres at high temperatures

Author:

Magro Fernando,Ceretti MonicaORCID,Meven MartinORCID,Paulus WernerORCID

Abstract

To understand oxygen diffusion mechanisms in non-stoichiometric oxides, the possibility to explore structural changes as a function of the oxygen partial pressure with temperature and related oxygen bulk stoichiometry is mandatory. This article reports on the realization of a high-temperature furnace, suitable for single-crystal neutron diffraction, working continuously at temperatures of up to 1000°C at different and adjustable partial gas pressures of up to 2 bar (1 bar = 100 kPa). This allows exploration of the phase diagrams of non-stoichiometric oxides under in situ conditions and controlled oxygen partial pressure. As a pilot study, the structural changes of Pr2NiO4+δ were explored at room temperature (δ ≃ 0.24) and at 900°C under 1 bar P(O2) (δ ≃ 0.13) as well as under secondary vacuum (approximately 10−5 mbar) conditions yielding a δ close to zero. The strong anharmonic displacements of the apical oxygen atoms along the [110] shallow diffusion pathway, which were previously observed at room temperature and 400°C, become more isotropic at 900°C. The study shows that the anisotropic oxygen displacements, here related to lattice instabilities, play a major role in understanding oxygen diffusion pathways and related activation energies at moderate temperatures. This also shows the importance of the availability of reaction cells for single-crystal neutron diffraction to explore the phase diagram and associated structural changes of non-stoichiometric oxygen ion conductors and respective diffusion mechanisms.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3