Algorithms and programs for the shell decomposition of oscillating functions in space

Author:

Urzhumtseva Ludmila,Lunin VladimirORCID,Urzhumtsev AlexandreORCID

Abstract

Real-space refinement of atomic models in macromolecular crystallography and cryo-electron microscopy fits a model to a map obtained with experimental data. To do so, the atomic model is converted into a map of limited resolution and then this map is compared quantitatively with the experimental one. For an appropriate comparison, the atomic contributions comprising the model map should reflect the resolution of the experimental map and the atomic displacement parameter (ADP) values. Such contributions are spherically symmetric oscillating functions, different for chemically different kinds of atoms, different ADPs and different resolution values, and their derivatives with respect to atomic parameters rule the model refinement. For given parameter values, every contribution may be calculated numerically using two Fourier transforms, which is highly time consuming and makes calculation of the respective derivatives problematic. Alternatively, for an atom of each required type its contribution can be expressed in an analytical form as a sum of specially designed terms. Each term is different from zero essentially inside a spherical shell, and changing the ADP value does not change its form but rather changes the value of one of its arguments. In general, these terms become a convenient tool for the decomposition of oscillating spherically symmetric functions. This work describes the algorithms and respective software, named dec3D, to carry out such a shell decomposition for density contributions of different kinds of atoms and ions.

Funder

French Infrastructure for Integrated Structural Biology

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3