A complex pseudo-decagonal quasicrystal approximant, Al37(Co,Ni)15.5, solved by rotation electron diffraction

Author:

Singh Devinder,Yun Yifeng,Wan Wei,Grushko Benjamin,Zou Xiaodong,Hovmöller Sven

Abstract

Electron diffraction is a complementary technique to single-crystal X-ray diffraction and powder X-ray diffraction for structure solution of unknown crystals. Crystals too small to be studied by single-crystal X-ray diffraction or too complex to be solved by powder X-ray diffraction can be studied by electron diffraction. The main drawbacks of electron diffraction have been the difficulties in collecting complete three-dimensional electron diffraction data by conventional electron diffraction methods and the very time-consuming data collection. In addition, the intensities of electron diffraction suffer from dynamical scattering. Recently, a new electron diffraction method, rotation electron diffraction (RED), was developed, which can overcome the drawbacks and reduce dynamical effects. A complete three-dimensional electron diffraction data set can be collected from a sub-micrometre-sized single crystal in less than 2 h. Here the RED method is applied forab initiostructure determination of an unknown complex intermetallic phase, the pseudo-decagonal (PD) quasicrystal approximant Al37.0(Co,Ni)15.5, denoted as PD2. RED shows that the crystal is F-centered, witha= 46.4,b= 64.6,c= 8.2 Å. However, as with other approximants in the PD series, the reflections with oddlindices are much weaker than those withleven, so it was decided to first solve the PD2 structure in the smaller, primitive unit cell. The basic structure of PD2 with unit-cell parametersa= 23.2,b= 32.3,c= 4.1 Å and space groupPnmmhas been solved in the present study. The structure withc= 8.2 Å will be taken up in the near future. The basic structure contains 55 unique atoms (17 Co/Ni and 38 Al) and is one of the most complex structures solved by electron diffraction. PD2 is built of characteristic 2 nm wheel clusters with fivefold rotational symmetry, which agrees with results from high-resolution electron microscopy images. Simulated electron diffraction patterns for the structure model are in good agreement with the experimental electron diffraction patterns obtained by RED.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3