Abstract
An X-ray diffraction (XRD)-based evaluation of the crystalline and amorphous phases in slag hydrating in an alkaline environment is presented. A method is developed for the quantification of the amorphous phases present in hydrating slag in a sodium hydroxide solution. In hydrating slag, the amorphous reaction product is identified as calcium aluminosilicate hydrate. A water-soluble sodium-based amorphous reaction product is also produced. The XRD-based quantification method relies on the direct decomposition of the XRD intensity pattern of the total amorphous phase present in partially hydrated slag into the intensity patterns of the amorphous unreacted slag, the hydrate and the sodium-based product. The unreacted slag content in partially hydrated slag is also determined from the decomposition of the intensity signature of the total amorphous phase. An independent verification of the amorphous unreacted slag content in hydrating slag is obtained from measurements of blends of unhydrated and partially hydrated slag. The XRD-based phase-quantification procedure developed here provides a basis for evaluating the extent of reaction in hydrating slag.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Reference57 articles.
1. Arndt, U. W., Creagh, D. C., Deslattes, R. D., Hubbell, J. H., Indelicato, P., Kessler, E. G. Jr & Lindroth, E. (2006). International Tables for Crystallography, Vol. C, Mathematical, Physical and Chemical Tables, 1st online ed., ch. 4.2, pp. 191-258. Chester: International Union of Crystallography.
2. Quantitative analysis of C–S–H in hydrating alite pastes by in-situ XRD
3. Quantitative XRD study of amorphous phase in alkali activated low calcium siliceous fly ash
4. Quantitative XRD Analysis of Binary Blends of Siliceous Fly Ash and Hydrated Cement
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献