Modeling the polarized X-ray scattering from periodic nanostructures with molecular anisotropy

Author:

Liman Christopher D.,Germer Thomas A.,Sunday Daniel F.,DeLongchamp Dean M.,Kline R. Joseph

Abstract

There is a need to characterize nanoscale molecular orientation in soft materials, and polarized scattering is a powerful means to measure this property. However, few approaches have been demonstrated that quantitatively relate orientation to scattering. Here, a modeling framework to relate the molecular orientation of nanostructures to polarized resonant soft X-ray scattering measurements is developed. A variable-angle transmission measurement called critical-dimension X-ray scattering enables the characterization of the three-dimensional shape of periodic nanostructures. When this measurement is conducted at resonant soft X-ray energies with different polarizations to measure soft material nanostructures, the scattering contains convolved information about the nanostructure shape and the preferred molecular orientation as a function of position, which is extracted by fitting using inverse iterative algorithms. A computationally efficient Born approximation simulation of the scattering has been developed, with a full tensor treatment of the electric field that takes into account biaxial molecular orientation, and this approach is validated by comparing it with a rigorous coupled wave simulation. The ability of various sample models to generate unique best fit solutions is then analyzed by generating simulated scattering pattern sets and fitting them with an inverse iterative algorithm. The interaction of the measurement geometry and the change in orientation across a periodic repeat unit leads to distinct asymmetry in the scattering pattern which must be considered for an accurate fit of the scattering.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3