Abstract
This article reports on in situ macroscopic scale imaging of NiO–YSZ (YSZ is yttria-stabilized zirconia) reduction under applied stress – a phase transition taking place in solid oxide electrochemical cells in a reducing atmosphere of a hydrogen/nitrogen mixture and at operation temperatures of up to 1073 K. This process is critical for the performance and lifetime of the cells. Energy-resolved neutron imaging was applied to observe the phase transition directly with time and spatial resolution. Two different approaches are presented for using this imaging technique for the investigation of chemical and physical processes requiring controlled atmosphere and elevated temperature. The first type of measurement is based on alternating stages of short-term partial chemical reaction and longer neutron image acquisition, and the second type is a real in situ neutron imaging experiment. Results of applying energy-resolved neutron imaging with both approaches to the NiO–YSZ reduction investigation indicate enhancement of the reduction rate due to applied stress, which is consistent with the results of the authors' previous research.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献