RADDOSE-XFEL: femtosecond time-resolved dose estimates for macromolecular X-ray free-electron laser experiments

Author:

Dickerson Joshua L.,McCubbin Patrick T. N.,Garman Elspeth F.ORCID

Abstract

For macromolecular structure determination at synchrotron sources, radiation damage remains a major limiting factor. Estimation of the absorbed dose (J kg−1) during data collection at these sources by programs such as RADDOSE-3D has allowed direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has enabled prediction of roughly when radiation damage will manifest so it can potentially be avoided. X-ray free-electron lasers (XFELs), which produce intense X-ray pulses only a few femtoseconds in duration, can be used to generate diffraction patterns before most of the radiation damage processes have occurred and hence hypothetically they enable the determination of damage-free atomic resolution structures. In spite of this, several experimental and theoretical studies have suggested that structures from XFELs are not always free of radiation damage. There are currently no freely available programs designed to calculate the dose absorbed during XFEL data collection. This article presents an extension to RADDOSE-3D called RADDOSE-XFEL, which calculates the time-resolved dose during XFEL experiments. It is anticipated that RADDOSE-XFEL could be used to facilitate the study of radiation damage at XFELs and ultimately be used prior to data collection so that experimenters can plan their experiments to avoid radiation damage manifesting in their structures.

Funder

Engineering and Physical Sciences Research Council

Laidlaw Foundation

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference65 articles.

1. Sur l'effet photoélectrique composé

2. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

3. GROMACS: A message-passing parallel molecular dynamics implementation

4. Berger, M. J., Coursey, J. S., Zucker, M. A. & Chang, J. (2005). NIST Standard Reference Database. National Institute of Standards and Technology, Gaithersburg, MD, USA.

5. Berger, M. J., Hubbell, J. H., Seltzer, S. M., Chang, J., Coursey, J. S., Sukumar, R., Zucker, D. S. & Olsen, K. (2010). XCOM: Photon Cross Sections Database, https://www.nist.gov/pml/xcom-photon-cross-sections-database.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3