Abstract
A method for the self-consistent description of the large variations of unit-cell parameters of crystals with pressure and temperature is presented. It employs linearized versions of equations of state (EoSs) together with constraints to ensure internal consistency. The use of polynomial functions to describe the variation of the unit-cell angles in monoclinic and triclinic crystals is compared with the method of deriving them from linearized EoSs for d spacings. The methods have been implemented in the CrysFML Fortran subroutine library. The unit-cell parameters and the compressibility and thermal expansion tensors of crystals can be calculated from the linearized EoSs in an internally consistent manner in a new utility in the EosFit7c program, which is available as freeware at http://www.rossangel.net.
Funder
H2020 European Research Council
Alexander von Humboldt-Stiftung
Agencia Estatal de Investigación
Ministero dell'Istruzione, dell'Università e della Ricerca
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献