Abstract
A new data analysis routine is introduced to reconstruct the change in lattice parameters in individual ferroelastic domains and the role of domain-wall motion in the piezoelectric effect. Using special electronics for the synchronization of a PILATUS X-ray area detector with a voltage signal generator, the X-ray diffraction intensity distribution was measured around seven split Bragg peaks as a function of external electric field. The new data analysis algorithm allows the calculation of `extrinsic' (related to domain-wall motion) and `intrinsic' (related to the change in lattice parameters) contributions to the electric-field-induced deformation. Compared with previously existing approaches, the new method benefits from the availability of a three-dimensional diffraction intensity distribution, which enables the separation of Bragg peaks diffracted from differently oriented domain sets. The new technique is applied to calculate the extrinsic and intrinsic contributions to the piezoelectricity in a single crystal of the ferroelectric PbZr1−x
Ti
x
O3 (x = 0.35). The root-mean-square value of the piezoelectric coefficient was obtained as 112 pC N−1. The contribution of the domain-wall motion is estimated as 99 pC N−1. The contribution of electric-field-induced changes to the lattice parameters averaged over all the domains is 71 pC N−1. The equivalent value corresponding to the change in lattice parameters in individual domains may reach up to 189 pC N−1.
Funder
Israel Science Foundation
National Natural Science Foundation of China
Poccийcкий Фoнд Фyндaмeнтaльных Иccлeдoвaний
Office of Naval Research, Office of Naval Research Global
Natural Sciences and Engineering Research Council of Canada
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献