Crystal structure of Mo-substituted lanthanum tungstate La5.4W1−y Mo y O12−δ (0 ≤ y ≤ 0.2) studied by X-ray and neutron diffraction

Author:

Fantin AndreaORCID,Scherb Tobias,Seeger Janka,Schumacher Gerhard,Gerhards UtaORCID,Ivanova Mariya E.ORCID,Meulenberg Wilhelm A.,Dittmeyer Roland,Banhart JohnORCID

Abstract

A determination of the detailed crystal structure of an Mo-substituted lanthanum tungstate series, La6−x W1−y Mo y O12−δ (0 ≤ y ≤ 0.2, δ is the oxygen deficiency), is presented. Material of composition La5.4W0.8Mo0.2O12−δ (y = 0.2) produced by the citrate-complexation route based on the Pechini method was investigated by high-resolution X-ray diffraction and neutron diffraction in the temperature range 10 ≤ T ≤ 298 K. The results are compared with a non-substituted material La5.4WO12−δ. A structural model established earlier for lanthanum tungstates and Re-substituted lanthanum tungstates is confirmed, according to which the Wyckoff site shared by La and W is split with half site occupancies (Fm\bar 3m space group, 48h site) and also accommodates Mo atoms. Substitution of W by up to 20 mol% Mo does not change the face-centred cubic lattice: Mo atoms substitute W statistically on both 4a and 48h Wyckoff sites of the crystal structure, which is described by the Fm\bar 3m space group. These results were obtained from the combination of the average neutron-scattering length and average X-ray scattering power procedures with electron-probe micro-analysis. The temperature dependence of bond lengths in dry and wet (D2O) conditions shows that vacant oxygen sites are located on the 32f Wyckoff sites also in Mo-substituted lanthanum tungstates, and that the bond lengths between La on 4b and O on 32f increase with increasing pO2 and pD2O, reflecting the filling of oxygen vacancies and the increase in coordination of La on 4b.

Funder

Helmholtz Association

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3