101 contact twins in gypsum experimentally obtained from calcium carbonate enriched solutions: mineralogical implications for natural gypsum deposits

Author:

Cotellucci AndreaORCID,Otálora Fermín,Canals Àngels,Criado-Reyes JoaquinORCID,Pellegrino Luca,Bruno MarcoORCID,Aquilano Dino,Garcia-Ruiz Juan ManuelORCID,Dela Pierre Francesco,Pastero LindaORCID

Abstract

Gypsum twins are frequently observed in nature, triggered by a wide array of impurities that are present in their depositional environments and that may exert a critical role in the selection of different twin laws. Identifying the impurities able to promote the selection of specific twin laws has relevance for geological studies aimed at interpreting the gypsum depositional environments in ancient and modern deposits. Here, the effect of calcium carbonate (CaCO3) on gypsum (CaSO4·2H2O) growth morphology has been investigated by performing temperature-controlled laboratory experiments with and without the addition of carbonate ions. The precipitation of twinned gypsum crystals has been achieved experimentally (101 contact twin law) by adding carbonate to the solution, and the involvement of rapidcreekite (Ca2SO4CO3·4H2O) in selecting the 101 gypsum contact twin law was supported, suggesting an epitaxial mechanism. Moreover, the occurrence of 101 gypsum contact twins in nature has been suggested by comparing the natural gypsum twin morphologies observed in evaporitic environments with those obtained in experiments. Finally, both orientations of the primary fluid inclusions (of the negative crystal shape) with respect to the twin plane and the main elongation of sub-crystals that form the twin are proposed as a fast and useful method (especially in geological samples) to distinguish between the 100 and 101 twin laws. The results of this study provide new insights into the mineralogical implications of twinned gypsum crystals and their potential as a tool to better understand natural gypsum deposits.

Funder

Ministero dell'Istruzione, dell'Università e della Ricerca

Universidades y Centros de Investigación Públicos

Ministerio de Ciencia e Innovación

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3