One-dimensional ledges and migration mechanism of incoherent interphase boundaries

Author:

Huang Yunhao,Wang JinchengORCID,Wang Zhijun,Li Junjie

Abstract

Since the edge-to-edge matching relationship of close-packed planes on an incoherent interphase boundary was found, the one-dimensional ledge migration mechanism has been put forward. However, owing to the lack of direct experimental evidence, the existence of the one-dimensional ledge is still questioned and it is thus usually treated as just an assumption. In this study, focusing on the existence of one-dimensional ledges and the migration mechanism of incoherent interphase boundaries, an atomic scale investigation on the migration of incoherent interphase boundaries in a body- to face-centered cubic transformation has been carried out using the phase-field crystal model. Simulation results demonstrated the presence of one-dimensional ledges on incoherent interphase boundaries, but only on those boundaries with high atomic densities. The simulation results further showed that the interphase boundaries with one-dimensional ledges migrate as a result of the nucleation and extension of the one-dimensional ledge, similar to the mechanism for two-dimensional ledges; meanwhile the interphase boundaries without one-dimensional ledges migrate according to a continuous mechanism by random atomic jumping. Because it is difficult for one-dimensional ledges to nucleate under low driving forces, interphase boundary migration based on the one-dimensional ledge mechanism is slower than that based on the continuous mechanism. This study reveals the structures and mechanisms of complex transitions of incoherent interphase boundaries and can aid a deeper understanding of solid phase transformations.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3