Computational diffraction reveals long-range strains, distortions and disorder in molecular dynamics simulations of irradiated single crystals

Author:

Boulle A.,Chartier A.ORCID,Debelle A.,Jin X.,Crocombette J.-P.

Abstract

Atomic-scale simulations, and in particular molecular dynamics (MD), are key assets to model the behavior of the structure of materials under the action of external stimuli, say temperature, strain or stress, irradiation, etc. Despite the widespread use of MD in condensed matter science, some basic material characteristics remain difficult to determine. This is, for instance, the case for the long-range strain tensor, and its root-mean-squared fluctuations, in disordered materials. In this work, computational diffraction is introduced as a fast and reliable structural characterization tool of atomic-scale simulation cells in the case of irradiated single crystals. In contrast to direct-space methods, computational diffraction operates in the reciprocal space and is therefore highly sensitive to long-range spatial correlations. With the example of irradiated UO2 single crystals, it is demonstrated that the normal strains, shear strains and rotations, as well as their root-mean-squared fluctuations (microstrain) and the atomic disorder, are straightforwardly and unambiguously determined. The methodology presented here has been developed with efficiency in mind, in order to be able to provide simple and reliable characterizations either operating in real time, in parallel with other analysis tools, or operating on very large data sets.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3