Using 2D integral breadth to study plastic relaxation in a quasi-lattice-matched HgCdTe/CdZnTe heterostructure

Author:

Biquard Xavier,Tuaz Aymeric,Ballet Philippe

Abstract

Micro-Laue diffraction has been used to record cross-section profiles on a quasi-lattice-matched HgCdTe/CdZnTe heterostructure as a function of the stress induced by a flexion machine. The heterostructure may be decomposed into four different regions according to depth. Sufficiently far from the interface, the CdZnTe substrate is undisturbed by the HgCdTe layer, while the region situated 10 µm beneath the interface presents an in-plane lattice parameter adjustment to the +0.02% mismatched layer. The layer has a 2 µm critical thickness and, beyond, misfit dislocations induce a large peak broadening whose main direction changes with depth. The same occurs over the whole heterostructure once flexion-induced plastification has started. Consequently, the usual full width at half-maximum or integral breadth is no longer relevant, and only a newly defined and rotationally invariant 2D integral breadth correctly measures the plastification-induced peak broadening. Taking into account only the critical thickness region, a 15.1 ± 0.7 MPa tensile HgCdTe elastic limit was measured, slightly overestimated because of the initial compressive layer stress. It was observed that the plastic onset of the substrate perfectly matches the elastic limit of the layer, despite the fact that the substrate elastic limit is expected to be four times higher: a striking demonstration of the propagation of threading dislocations. The `plastification easiness' is found to be 2.4 times smaller deep inside the substrate than in the layer critical thickness region, while in the substrate lattice adjustment region, the plastification easiness goes from the substrate to the layer value with a 22–25 MPa transition interval. This novel method using the 2D integral breadth allows for easy critical thickness measurement as well as precise plastic onset determination and plastification easiness assessment. It is a quite general method, since it may be applied to the vast class of epitaxial layers for which the critical thickness is larger than the micro-Laue beam size (currently 250 nm).

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3