Characterization of carbon structures produced by graphene self-assembly

Author:

Matassa Roberto,Orlanducci Silvia,Tamburri Emanuela,Guglielmotti Valeria,Sordi Daniela,Terranova Maria Letizia,Passeri Daniele,Rossi Marco

Abstract

Low-dimensional carbon-based materials, in particular two-dimensional graphenic carbon structures, have been produced from single-walled carbon nanotube disruption using high-shear mixing and/or treatments in sulfonitric acid mixtures at both room and high temperature. Among other two-dimensional graphenic carbon structures, colloidal dispersions of graphenic nanoflakes have been obtained. Different structural arrangements, resulting from the reorganization of carbon because of the disruption procedures applied, were observed through selected area electron diffraction (SAED) and through reflection high-energy electron diffraction (RHEED) analyses coupled to transmission and scanning electron microscopy observations. Such combined investigations in the real and reciprocal space provided structural information at the nanoscale on the clustering of graphene layers in nanoplatelets or/and on their assembly into highly ordered (single-crystal) nanosheets. Furthermore, a different carbon phase exhibiting an orthorhombic cell withCmmasymmetry has been detected by SAED and RHEED analyses. In addition, a variety of self-assemblies of hexagonal basal planes have been observed to occur as the result of their different rotational and/or translational stacking faults. Overall, the reported results contribute to define the conditions for a controlled self-assembly of graphene-based structures with tailored dimensions, which is an important technological challenge, as their structure at the nanoscale dramatically affects their electrical properties.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3