Abstract
Nucleation, nucleus number densities, and the respective supersaturation dependence, crystal growth and Ostwald ripening are reconsidered from the energetics perspective. Supersaturation-dependent critical nucleus sizes are calculated accordingly. It is argued that the logistic time-dependent nucleation resembles one period of a harmonic oscillation. The general conclusion is that a crystallizing system adapts to the distorting influence of the supersaturation imposed, and during crystal nucleation and growth, the system gradually consumes this supersaturation to reach a new equilibrium state at the end of Ostwald ripening (completely exhausted supersaturation). This is an indication that the system responds to the change in its energetic status according to the well known Le Châtelier–Braun principle. The extent to which the nucleation process affects the crystal size distribution (CSD) is also discussed. Slightly altered by the crystal growth, the CSD also preserves some trace of the nucleation stage shape during Ostwald ripening.
Funder
Bulgarian National Science Fund
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献