Combining a multi-analyzer stage with a two-dimensional detector for high-resolution powder X-ray diffraction: correcting the angular scale

Author:

Fitch AndrewORCID,Dejoie CatherineORCID

Abstract

In a test experiment, a two-dimensional pixel detector was mounted on the nine-channel multi-analyzer stage of the high-resolution powder diffraction beamline ID22 at the ESRF. This detector replaces a bank of scintillation counters that detect the diffracted intensity passing via the analyzer crystals as the diffractometer arm is scanned. At each diffractometer detector arm angle 2Θ, a 2D image is recorded that displays nine distinct regions of interest corresponding to the diffraction signals transmitted by each of the analyzer crystals. Summing pixels from within each region of interest allows the diffracted intensity to be extracted for each channel. X-rays are diffracted from the sample at various angles, 2θ, into Debye–Scherrer cones. Depending on the azimuthal angle around the cone, diffracted photons satisfy the analyzer-crystal Bragg condition at different diffractometer 2Θ values and arrive on the detector at different horizontal (axial) positions. The more the azimuthal angle deviates from diffraction in the vertical plane, the lower the 2Θ angle at which it is transmitted by an analyzer crystal, and the greater the distance of the detecting pixel from the centerline of the detector. This paper illustrates how the axial resolution afforded by the pixel detector can be used to correct the apparent diffraction angle, 2Θ, given by the diffractometer arm to its true diffraction angle, 2θ. This allows a reduction in peak asymmetry at low angle, and even with a relatively small axial acceptance, the correction leads to narrower peaks than if no correction is applied. By varying axial acceptance with diffraction angle, it is possible to optimize angular resolution at low diffraction angles and counting statistics at high angles. In addition, there is an intrinsic peak broadening with increasing azimuthal angle, dependent on the axial beam and detector pixel sizes. This effect reduces with 2θ, as the curvature of the Debye–Scherrer cones decreases. This broadening can be estimated and used to help choose the axial range to include as a function of diffraction angle.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3