Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach

Author:

Levard Clement,Michel F. Marc,Wang Yingge,Choi Yongseong,Eng Peter,Brown Gordon E.

Abstract

Characterizing interfacial reactions is a crucial part of understanding the behavior of nanoparticles in nature and for unlocking their functional potential. Here, an advanced nanostructure characterization approach to study the corrosion processes of silver nanoparticles (Ag-Nps), currently the most highly produced nanoparticle for nanotechnology, is presented. Corrosion of Ag-Nps under aqueous conditions, in particular in the presence of organic matter and halide species common to many natural environments, is of particular importance because the release of toxic Ag+from oxidation/dissolution of Ag-Nps may strongly impact ecosystems. In this context, Ag-Nps capped with polyvinolpyrrolidone (PVP) in contact with a simple proxy of organic matter in natural waters [polyacrylic acid (PAA) and Clin solution] has been investigated. A combination of synchrotron-based X-ray standing-wave fluorescence yield- and X-ray diffraction-based experiments on a sample consisting of an approximately single-particle layer of Ag-Nps deposited on a silicon substrate and coated by a thin film of PAA containing Cl revealed the formation of a stable AgCl corrosion product despite the presence of potential surface stabilizers (PVP and PAA). Diffusion and precipitation processes at the Ag-Nps–PAA interface were characterized with a high spatial resolution using this new approach.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3