Abstract
Analyzer-based imaging has improved tissue X-ray imaging beyond what conventional radiography was able to achieve. The extent of the improvement is dependent on the crystal reflection used in the monochromator and analyzer combination, the imaging photon energy, the geometry of the sample and the imaging detector. These many factors determine the ability of the system to distinguish between various bone tissues or soft tissues with a specified statistical certainty between pixels in a counting detector before any image processing. The following discussion will detail changes in the required number of imaging photons and the resulting surface absorbed dose when the imaging variables are altered. The process whereby the optimal imaging parameters to deliver the minimum surface absorbed dose to a sample while obtaining a desired statistical certainty between sample materials for an arbitrary analyzer-based imaging system will be described. Two-component samples consisting of bone and soft tissue are discussed as an imaging test case. The two-component approach will then be generalized for a multiple-component sample.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of surface absorbed dose in X-ray grating interferometry;Journal of Electron Spectroscopy and Related Phenomena;2014-10